Gleichstrom: Unterschied zwischen den Versionen
Aus Wiki.sah
E.T. (Diskussion | Beiträge) KKeine Bearbeitungszusammenfassung |
|||
| Zeile 40: | Zeile 40: | ||
|W = U · I · t | |W = U · I · t | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|W = P · t | |W = P · t | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|W = U · Q | |W = U · Q | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|P = U · I = W / t | |P = U · I = W / t | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 73: | Zeile 73: | ||
|η = Pab / Pzu | |η = Pab / Pzu | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|η = Pv = Pzu - Pab | |η = Pv = Pzu - Pab | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|ηges = ETA1 · ETA2 | |ηges = ETA1 · ETA2 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 135: | Zeile 135: | ||
|R = l / ([[Griechisches Alphabet|γ]] · A) | |R = l / ([[Griechisches Alphabet|γ]] · A) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|R = ([[Griechisches Alphabet|ρ]] · l) / A | |R = ([[Griechisches Alphabet|ρ]] · l) / A | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 156: | Zeile 156: | ||
|ΔR = α20 · Δθ · R20 | |ΔR = α20 · Δθ · R20 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Rθ = R20 + ΔR | |Rθ = R20 + ΔR | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Rθ = R20 · (1 + α20 · Δθ) | |Rθ = R20 · (1 + α20 · Δθ) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Δθ = (Rθ - R20) / (α20 · R20) | |Δθ = (Rθ - R20) / (α20 · R20) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 192: | Zeile 192: | ||
|Rers = R1 + R2 + R3 | |Rers = R1 + R2 + R3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|I = I1 = I2 = I3 | |I = I1 = I2 = I3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 213: | Zeile 213: | ||
|1/Rers = 1/R1 + 1/R2 + 1/R3 | |1/Rers = 1/R1 + 1/R2 + 1/R3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Rers = (R1 · R2) / (R1 + R2) | |Rers = (R1 · R2) / (R1 + R2) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|I = I1 + I2 + I3 | |I = I1 + I2 + I3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 259: | Zeile 259: | ||
|Rn = Rm / (n-1) | |Rn = Rm / (n-1) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|n = I / Im | |n = I / Im | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 296: | Zeile 296: | ||
|R = Ra + (Ri / n) | |R = Ra + (Ri / n) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 316: | Zeile 316: | ||
|U = U1 + U2 + U3 | |U = U1 + U2 + U3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|U = IR1 + IR2 + IR3 | |U = IR1 + IR2 + IR3 | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 335: | Zeile 335: | ||
|Uv = I · RL | |Uv = I · RL | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Uv = I · ρ · ((2 · L) / A) | |Uv = I · ρ · ((2 · L) / A) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 360: | Zeile 360: | ||
|U = Uo - I · Ri | |U = Uo - I · Ri | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|I = Uo / (Ra + Ri) | |I = Uo / (Ra + Ri) | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 397: | Zeile 397: | ||
|Uo = I · Ra + I · Ri | |Uo = I · Ra + I · Ri | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|Uo = I' · R'a + I' · Ra | |Uo = I' · R'a + I' · Ra | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 427: | Zeile 427: | ||
|R1 = (1 - k) · R | |R1 = (1 - k) · R | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|R2 = k · R | |R2 = k · R | ||
|} | |} | ||
<br> | |||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
| Zeile 461: | Zeile 461: | ||
---- | ---- | ||
'''Pfad: [[Hauptseite|Home]] / [[Physik]] / [[Formeln Physik|Formeln]] / [[Formeln Elektrotechnik|Elektrotechnik]]''' | '''Pfad: [[Hauptseite|Home]] / [[Physik]] / [[Formeln Physik|Formeln]] / [[Formeln Elektrotechnik|Elektrotechnik]] / {{PAGENAME}}''' | ||
[[Kategorie:Physik]] | [[Kategorie:Physik]] | ||
[[Kategorie:Formeln]] | [[Kategorie:Formeln]] | ||
[[Kategorie:Elektrotechnik]] | [[Kategorie:Elektrotechnik]] | ||
Version vom 4. Juli 2009, 17:05 Uhr
Stromstärke und elektrische Ladung
| I = Q / t |
I Stromstärke [I] = A (Ampere) Q Ladungsmenge / Elektrizitätsmenge [A · s = C] = C (Coulomb) t Zeit [s] = s (Sekunde)
Spannung
| U = W / Q |
U Klemmspannung [ W / A = V ] = V (Volt) Q Ladungsmenge / Elektrizitätsmenge [ A · s = C ] = C (Coulomb) P elektr. Leistung [ V · A = J / s = (N · m) / s = W ] = W (Watt) W elektr. Arbeit / Stromarbeit [ V · A · s = N · m = W · s = J ] = J (Joule)
Ohmsches Gesetz
| I = U / R |
U Spannung [U] = V (Volt) I Stromstärke [I] = A (Ampere) R Widerstand [R] = Ω (Ohm) G=1/R Leitwert [G] = S (Siemens)
Energie, Arbeit und Leistung
| W = U · I · t |
| W = P · t |
| W = U · Q |
| P = U · I = W / t |
| P = I² · R = U² / R |
U Klemmspannung [V = W/A] = V (Volt) I Stromstärke [A] = A (Ampere) t Zeit [s] = s (Sekunde) W elektr. Arbeit / Stromarbeit [V · A · s = N · m = J = W · s] P elektr. Leistung [V · A = W = J/s = (N · m)/s] = W (Watt)
Wirkungsgrad
| η = Pab / Pzu |
| η = Pv = Pzu - Pab |
| ηges = ETA1 · ETA2 |
| η = P / Pges = Ra · I² / (Ri + Ra) · I² = Ra / Ri · (1 + Ra / Ri) = (Ra / Ri) / (1 + Ra / Ri) |
Pab abgegebene Leistung [V · A = W = J / s = N · m / s] = W (Watt) Pzu zugeführte Leistung [V · A = W = J / s = N · m / s] = W (Watt) Pv Verlustleistung [V · A = W = J / s = N · m / s] = W (Watt) η Wirkungsgrad (griech. "eta")
Stromdichte
| S = I / A |
S Stromdichte [A / mm²] I Stromstärke [A = V / Ω] = A (Ampere) A Querschnitt des Drahtes [mm²] = A = d² · pi / 4
Widerstand und Leitwert
| G = 1 / R |
R Widerstand [Ω = V / A] = Ω (Ohm) G Leitwert [S = 1 / Ω] = S (Siemens)
Einheitswiderstand und Einheitsleitwert
| ρ = 1 / κ |
Einheitswiderstand Einheitsleitwert Temperaturkoeff.
-------------------------------------------------------
ρ · 10^-6 [Ω·m] κ · 10^-6 [S/m] α20 [1/K]
Silber 0,016 62,5 0,0041
Kupfer 0,01786 56 0,0039
Aluminium 0,02857 35 0,004
Leiterwiderstand
| R = l / (γ · A) |
| R = (ρ · l) / A |
| γ = 1 / ρ |
R Leiterwiderstand [Ω = V / A] = Ω (Ohm) l Länge des Drahtes [m] = m (Meter) A Querschnitt des Drahtes [mm²] = A = d² · π / 4
Temperaturabhängigkeit von Widerständen
| ΔR = α20 · Δθ · R20 |
| Rθ = R20 + ΔR |
| Rθ = R20 · (1 + α20 · Δθ) |
| Δθ = (Rθ - R20) / (α20 · R20) |
| A = ((ρ · l) / R20) · (1 + α20 · Δθ) |
ΔR Widerstandsänderung [Ω = V / A] = Ω (Ohm)
Rθ Warmwiderstand [Ω = V / A] = Ω (Ohm)
R20 Kaltwiderstand bei 20°C [Ω = V / A] = Ω (Ohm)
α20 Temperaturkoeffizient [1 / K] = K (Kelvin)
Δθ Temperaturdifferenz [K]
A Querschnitt bei gleichem
Widerstand, aber bei anderer Temperatur
l Länge des Drahtes [m] = m (Meter)
Reihenschaltungen von Widerständen
| Rers = R1 + R2 + R3 |
| I = I1 = I2 = I3 |
| U = U1 + U2 + U3 |
Rers Ersatzwiderstand [Ω = V / A] = Ω (Ohm) I Stromstärke [A = V / Ω] = A (Ampere) U Spannung [V = A · Ω] = V (Volt)
Parallelschaltungen von Widerständen
| 1/Rers = 1/R1 + 1/R2 + 1/R3 |
| Rers = (R1 · R2) / (R1 + R2) |
| I = I1 + I2 + I3 |
| U = U1 = U2 = U3 |
Rers Ersatzwiderstand [Ω = V / A] = Ω (Ohm) I Stromstärke [A = V / Ω] = A (Ampere) U Spannung [V = A · Ω] = V (Volt)
Knotenregel (1. Kirchhoffsches Gesetz)
| ΣIzu = ΣIab |
ΣIzu Summe der zufließenden Ströme ΣIab Summe der abfließenden Ströme
Maschenregel (2. Kirchhoffsches Gesetz)
| ΣUerz = ΣUverb |
ΣUerz Summe der Erzeugerspannungen ΣUverb Summe der Verbraucherspannungen
Meßbereichserweiterung von Spannungsmessern
| Rn = Rm / (n-1) |
| n = I / Im |
| In = I - Im |
Rn Nebenwiderstand [Ω = V / A] = Ω (Ohm) Rm Meßwerkwiderstand [Ω = V / A] = Ω (Ohm) n Faktor Meßbereichserweiterung I zu messende Stromstärke [A = V / Ω] = A (Ampere) Im Meßwerkstrom [A = V / Ω] = A (Ampere) In Stromim Nebenwiderstand [A = V / Ω] = A (Ampere)
Reihenschaltung von gleichen Spannungsquellen
| I = (n · Uo) / (Ra + n · Ri) |
Ri innere Widerstand [Ω = V / A] = Ω (Ohm) Ra äußere Widerstand [Ω = V / A] = Ω (Ohm) Uo Urspannung [V = A · Ω] = V (Volt) n Anzahl gleicher Spannungsquellen I Stromstärke im Stromkreis [A = V / Ω] = A (Ampere)
Parallelschaltung von gleichen Spannungsquellen
| R = Ra + (Ri / n) |
| I = Uo / (Ra + (Ri / n)) |
Ri innere Widerstand [Ω = V / A] = Ω (Ohm) Ra äußere Widerstand [Ω = V / A] = Ω (Ohm) Uo Urspannung [V = A · Ω] = V (Volt) n Anzahl gleicher Spannungsquellen I Stromstärke im Stromkreis [A = V / Ω] = A (Ampere)
Ersatzschaltung für Spannungsquellen besteht aus Uo und Ri
Gültigkeit des Ohmschen Gesetzes für Teile eines Stromkreises
| U = U1 + U2 + U3 |
| U = IR1 + IR2 + IR3 |
| U = IRers |
U Gesamtspannung [V = A · Ω] = V (Volt)
Spannungsfall und Spannungsverlust
| Uv = I · RL |
| Uv = I · ρ · ((2 · L) / A) |
| Un = U - Uv |
Uv Spannungsverlust [V = A · Ω] = V (Volt) Un Nutzspannung [V = A · Ω] = V (Volt) U Klemmspannung [V = A · Ω] = V (Volt) I Stromstärke [A = V / Ω] = A (Ampere) L Länge der Leitung [m] = m (Meter) RL Leitungswiderstand [Ω = V / A] = Ω (Ohm) ρ Einheitswiderstand [Ω · m]
Innerer Spannungsfall in Spannungsquellen
| U = Uo - I · Ri |
| I = Uo / (Ra + Ri) |
| Uo = I · Ra + I · Ri |
Uv Spannungsverlust [V = A · Ω] = V (Volt) Un Nutzspanung [V = A · Ω] = V (Volt) U Klemmspannung [V = A · Ω] = V (Volt) I Stromstärke [A = V / Ω] = A (Ampere) L Länge der Leitung [m] = m (Meter) RL Leitungswiderstand [Ω = V / A] = Ω (Ohm) ρ Einheitswiderstand [Ω · m]
Leerlauf der Spannungsquelle Ra >> unendlich -> I = 0; Kurzschluss der Spannungsquelle Ra >> 0 -> I >> unendlich (tatsächlich begrenzt durch Ri + Ra)
Leistungsanpassung, Maximum wenn Ra = Ri
| P = U · I = Uo · (Ra / (Ra + Ri)) |
Uo Urspannung [V = A · Ω] = V (Volt)
Berechnung der Urspannung und des inneren Widerstandes einer Stromquelle
| Uo = I · Ra + I · Ri |
| Uo = I' · R'a + I' · Ra |
| Ri = (I' · R'a - I · Ra) / (I - I') |
Uo Urspannung [V = A · Ω] = V (Volt)
Vorschaltwiderstand eines Verbrauchers
| Rv = (U - Un) / I |
Rv Vorschaltwiderstand [Ω = V / A] = Ω (Ohm) U verfügbare Netzspannung [V = A · Ω] = V (Volt) Un Nennspannung des Verbrauchers [V = A · Ω] = V (Volt)
Spannungsteiler
| R1 = (1 - k) · R |
| R2 = k · R |
| U3 / U = k / (1 + (R / R3) · k · (1 - k)) |
R1 oberer Teil des Spannungsteilers R2 unterer Teil des Spannungsteilers R3 Verbraucherwiderstand [Ω = V / A] = Ω (Ohm) R Schiebewiderstand [Ω = V / A] = Ω (Ohm) U Gesamtspannung [V = A · Ω] = V (Volt) k k = 0 > keine Spannung, k = 1 > volle Spannung
Wheatstonesche Meßbrücke
| Rx / RN = R1 / R2 = L1 / L2 |
Rx unbekannter Widerstand [Ω = V / A] = Ω (Ohm) RN Nominalwiderstand, Vergleichswiderstand [Ω = V / A] = Ω (Ohm) R1 erster Teil des Widerstandes vom Spannungsteiler R2 zweiter Teil des Widerstandes vom Spannungsteiler L1 erster Teil des Drahtes vom Spannungsteiler L2 zweiter Teil des Drahtes vom Spannungsteiler
Pfad: Home / Physik / Formeln / Elektrotechnik / Gleichstrom