Formeln Kreis: Unterschied zwischen den Versionen
Aus Wiki.sah
Zur Navigation springenZur Suche springenE.T. (Diskussion | Beiträge) (→Kreisausschnitt) |
E.T. (Diskussion | Beiträge) |
||
(16 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
+ | __TOC__ | ||
+ | |||
+ | {{Adsense linkblock 160x90}} | ||
+ | |||
== Kreis == | == Kreis == | ||
− | http://www.science-at-home. | + | http://www.science-at-home.de/bilder/wikidata/mathematik/kreis.gif |
+ | |||
+ | {| style="text-align: right" border = "0" style="border-collapse: collapse" cellpadding="5" align="right" | ||
+ | |- | ||
+ | ! style="text-align: left;" | | ||
+ | {{Ad Amazon Widget 300x250}} | ||
+ | |} | ||
{| | {| | ||
Zeile 15: | Zeile 25: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 28: | Zeile 38: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 41: | Zeile 51: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 54: | Zeile 64: | ||
|} | |} | ||
|} | |} | ||
+ | |||
+ | |||
+ | === Näherungswert/Faustformel für den Kreisumfang === | ||
+ | |||
+ | {{Formel|='''U''' ≈ (22 / 7) · d}} | ||
A Fläche | A Fläche | ||
Zeile 59: | Zeile 74: | ||
r Radius | r Radius | ||
U Umfang | U Umfang | ||
− | π Kreiszahl Pi (≈ 3,14159) | + | π [[Kreiszahl Pi]] (≈ 3,14159) |
== Kreisring == | == Kreisring == | ||
− | http://www.science-at-home. | + | {| style="text-align: right" border = "0" style="border-collapse: collapse" cellpadding="5" align="right" |
+ | |- | ||
+ | ! style="text-align: left;" | | ||
+ | {{Adsense 300x250}} | ||
+ | |} | ||
+ | |||
+ | http://www.science-at-home.de/bilder/wikidata/mathematik/kreisring.gif | ||
{| | {| | ||
Zeile 82: | Zeile 103: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 100: | Zeile 121: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 118: | Zeile 139: | ||
|} | |} | ||
|} | |} | ||
− | + | <br> | |
{| | {| | ||
| | | | ||
Zeile 144: | Zeile 165: | ||
== Kreisausschnitt == | == Kreisausschnitt == | ||
− | http://www.science-at-home. | + | {| style="text-align: right" border = "0" style="border-collapse: collapse" cellpadding="5" align="right" |
+ | |- | ||
+ | |<html><a href="http://www.amazon.de/gp/product/3895172537/ref=as_li_tf_il?ie=UTF8&camp=1638&creative=6742&creativeASIN=3895172537&linkCode=as2&tag=sciencehomede-21"><img border="0" src="http://ws-eu.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=3895172537&Format=_SL160_&ID=AsinImage&MarketPlace=DE&ServiceVersion=20070822&WS=1&tag=sciencehomede-21" ></a><img src="http://ir-de.amazon-adsystem.com/e/ir?t=sciencehomede-21&l=as2&o=3&a=3895172537" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /></html> || <html><a href="http://www.amazon.de/gp/product/3127185103/ref=as_li_tf_il?ie=UTF8&camp=1638&creative=6742&creativeASIN=3127185103&linkCode=as2&tag=sciencehomede-21"><img border="0" src="http://ws-eu.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=3127185103&Format=_SL160_&ID=AsinImage&MarketPlace=DE&ServiceVersion=20070822&WS=1&tag=sciencehomede-21" ></a><img src="http://ir-de.amazon-adsystem.com/e/ir?t=sciencehomede-21&l=as2&o=3&a=3127185103" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /></html> | ||
+ | |} | ||
+ | |||
+ | http://www.science-at-home.de/bilder/wikidata/mathematik/kreisausschnitt.gif | ||
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
Zeile 150: | Zeile 176: | ||
|'''A''' = (π · d² · α) / (4 · 360°) | |'''A''' = (π · d² · α) / (4 · 360°) | ||
|} | |} | ||
− | + | <br> | |
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
|'''A''' = (r · l<sub>B</sub>) / 2 | |'''A''' = (r · l<sub>B</sub>) / 2 | ||
|} | |} | ||
− | + | <br> | |
{| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
|- bgcolor="#e1e8f2" align="center" valign="middle" | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
Zeile 170: | Zeile 196: | ||
== Kreisabschnitt == | == Kreisabschnitt == | ||
− | http://www.science-at-home. | + | {| style="text-align: right" border = "0" style="border-collapse: collapse" cellpadding="5" align="right" |
+ | |- | ||
+ | |<html><a href="http://www.amazon.de/gp/product/3860726382/ref=as_li_tf_il?ie=UTF8&camp=1638&creative=6742&creativeASIN=3860726382&linkCode=as2&tag=sciencehomede-21"><img border="0" src="http://ws-eu.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=3860726382&Format=_SL160_&ID=AsinImage&MarketPlace=DE&ServiceVersion=20070822&WS=1&tag=sciencehomede-21" ></a><img src="http://ir-de.amazon-adsystem.com/e/ir?t=sciencehomede-21&l=as2&o=3&a=3860726382" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /></html> || <html><a href="http://www.amazon.de/gp/product/382741797X/ref=as_li_tf_il?ie=UTF8&camp=1638&creative=6742&creativeASIN=382741797X&linkCode=as2&tag=sciencehomede-21"><img border="0" src="http://ws-eu.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=382741797X&Format=_SL160_&ID=AsinImage&MarketPlace=DE&ServiceVersion=20070822&WS=1&tag=sciencehomede-21" ></a><img src="http://ir-de.amazon-adsystem.com/e/ir?t=sciencehomede-21&l=as2&o=3&a=382741797X" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /></html> | ||
+ | |- | ||
+ | |<html><a href="http://www.amazon.de/gp/product/3860726552/ref=as_li_tf_il?ie=UTF8&camp=1638&creative=6742&creativeASIN=3860726552&linkCode=as2&tag=sciencehomede-21"><img border="0" src="http://ws-eu.amazon-adsystem.com/widgets/q?_encoding=UTF8&ASIN=3860726552&Format=_SL160_&ID=AsinImage&MarketPlace=DE&ServiceVersion=20070822&WS=1&tag=sciencehomede-21" ></a><img src="http://ir-de.amazon-adsystem.com/e/ir?t=sciencehomede-21&l=as2&o=3&a=3860726552" width="1" height="1" border="0" alt="" style="border:none !important; margin:0px !important;" /></html> || | ||
+ | |} | ||
+ | |||
+ | http://www.science-at-home.de/bilder/wikidata/mathematik/kreisabschnitt.gif | ||
+ | |||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' = (l<sub>B</sub> · r - l (r - b)) / 2 | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' = (π · d² ) / 4 · (α / 360) - (l(r - b)/2) | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' = (l · r - r² · sin (l/r)) / 2 | ||
+ | |} | ||
+ | <br> | ||
+ | {| align="center" | ||
+ | | | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' ≈ 2 / 3 · l · b | ||
+ | |} | ||
+ | | | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#edecf2" align="center" valign="middle" | ||
+ | |'''b''' ≈ (A · 3) / (2 · l) | ||
+ | |} | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''l<sub>B</sub>''' = (π · r · α ) / 180° | ||
+ | |} | ||
+ | |||
+ | A Fläche | ||
+ | r Radius | ||
+ | d Durchmesser | ||
+ | l<sub>B</sub> Bogenlänge | ||
+ | l Sehnenlänge | ||
+ | b Breite | ||
+ | α Innenwinkel | ||
== Ellipse == | == Ellipse == | ||
− | http://www.science-at-home. | + | {| style="text-align: right" border = "0" style="border-collapse: collapse" cellpadding="5" align="right" |
+ | |- | ||
+ | ! style="text-align: left;" | | ||
+ | {{Adsense linkblock 160x90}} | ||
+ | |} | ||
+ | |||
+ | http://www.science-at-home.de/bilder/wikidata/mathematik/ellipse.gif | ||
+ | |||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' ≈ (π · D · d) / 4 | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''A''' = π · R · r | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''U''' ≈ π · (D + d) / 2 | ||
+ | |} | ||
+ | <br> | ||
+ | {| border="1" cellpadding="4" cellspacing="0" style="BORDER-COLLAPSE: collapse" borderColor="#336699" align="center" | ||
+ | |- bgcolor="#e1e8f2" align="center" valign="middle" | ||
+ | |'''U''' ≈ π · (R + r) | ||
+ | |} | ||
+ | |||
+ | A Fläche | ||
+ | d kleine Achse | ||
+ | D große Achse | ||
+ | r kleine Halbachse | ||
+ | R große Halbachse | ||
+ | U Umfang | ||
Zeile 183: | Zeile 290: | ||
[[Kategorie:Mathematik]] | [[Kategorie:Mathematik]] | ||
[[Kategorie:Geometrie]] | [[Kategorie:Geometrie]] | ||
− | [[Kategorie: | + | [[Kategorie:Formel Geometrie]] |
+ | [[Kategorie:Ad man]] | ||
+ | [[Kategorie:Ad man (amazon)]] |
Aktuelle Version vom 25. März 2019, 13:48 Uhr
Inhaltsverzeichnis
Kreis
|
---|
|
|
|
|
|
|
|
|
Näherungswert/Faustformel für den Kreisumfang
U ≈ (22 / 7) · d |
A Fläche d Durchmesser r Radius U Umfang π Kreiszahl Pi (≈ 3,14159)
Kreisring
|
---|
|
|
|
|
|
|
|
|
|
|
|
A Kreisringfläche D Außendurchmesser d Innendurchmesser dm mittlerer Durchmesser R Radius Kreisring außen r Radius Kreisring innen b breite des Kreisrings L gestreckte Länge π Kreiszahl Pi (≈ 3,14159)
Kreisausschnitt
A = (π · d² · α) / (4 · 360°) |
A = (r · lB) / 2 |
lB = (π · d · α) / 360° |
A Fläche des Kreisausschnitts d Durchmesser r Radius lB Bogenlänge α Innenwinkel π Kreiszahl Pi (≈ 3,14159)
Kreisabschnitt
A = (lB · r - l (r - b)) / 2 |
A = (π · d² ) / 4 · (α / 360) - (l(r - b)/2) |
A = (l · r - r² · sin (l/r)) / 2 |
|
|
lB = (π · r · α ) / 180° |
A Fläche r Radius d Durchmesser lB Bogenlänge l Sehnenlänge b Breite α Innenwinkel
Ellipse
|
---|
A ≈ (π · D · d) / 4 |
A = π · R · r |
U ≈ π · (D + d) / 2 |
U ≈ π · (R + r) |
A Fläche d kleine Achse D große Achse r kleine Halbachse R große Halbachse U Umfang
Pfad: Home / Mathematik / Geometrie / Kreis